
Optimizing YUV-RGB Color Space Conversion

Using Intel’s SIMD Technology

Étienne Dupuis

August 2003

Abstract

Multimedia players must deal with MPEG video streams. Rendering
these highly compressed streams on screen requires intensive and lengthy
computations. Improving the speed of these computations may have a
noticeable impact on the image quality and fluidity. In this document
we explore the conversion of a decoded image in YUV color format to
the RGB color format, suitable for rendering by the Microsoft Windows
operating system. The final step of our optimization uses Intel’s Pentium
SIMD instructions to drastically improve the speed of the algorithm.

1 YUV Color Space

A large number of computer users have already encountered the RGB color
space. A color space provides an association between a set of values and a color.
The RGB color space represents colors in terms of red, blue and green intensity.
The combination of these values by the electron beam inside a classical monitor
allows it to display virtually any color.

However, there are some drawbacks with this representation. For example, the
brightness of a pixel may not be changed easily, as it must be computed from
the RGB components. These components must then be recalculated with the
new intensity in order to obtain the same color, brighter. Standard video signals
like PAL1, NTSC2 or SECAM3 hence uses an alternative color scheme, YUV.
The Y component represents luminance, or intensity, which is suitable for black
and white display devices. With the introduction of color TV two additional
signals, U and V, were added to represent color.

As part of the development of a world-wide digital video standard, YUV was
redefined as YCbCr and equations were laid out such that the values of the

1Phase Alternation Line
2National Television System Committee
3Séquentiel couleur avec mémoire

1

three components (which we will still call Y, U and V) fit in the 0-255 range.
The equation4 to convert from the RGB color space isY

U
V

 =

 0.257 0.504 0.098
−0.148 −0.291 0.439
0.439 −0.368 −0.071

R
G
B

 +

 16
128
128

 ,

while the inverse conversion can be achieved withR
G
B

 =

1.164 0 1.596
1.164 −0.391 −0.813
1.164 2.018 0

Y
U
V

−

 16
128
128

 .

Note that if 0 ≤ R,G,B ≤ 255 then 16 ≤ Y ≤ 235 and 16 ≤ U, V ≤ 240, which
is perfect for a byte representation.

We conclude this section with a biology fact. The human eye is more sensitive to
luminosity than color. Hence the U and V components may be undersampled to
lower an image’s byte size, thus improving transmission speeds and saving disk
space. For example, YCbCr 4:2:0 uses one byte per pixel for the Y component
and one byte for each 2× 2 pixel region for the two color components.

2 Algorithm to Optimize

The algorithm we will optimize is the conversion from YCbCr 4:2:0 to RGB.
The input consists of three byte buffers containing Y , U and V values. For a
w × h image, the Y buffer is wh bytes long, values being stored line by line:

Yi,j = yjw+i,

where yk denotes the kth byte of the buffer and Yi,j is the Y value for pixel
in ith column, jth row. The U and V buffers are both wh/4 bytes long, as
every value is shared by four pixels, in 2× 2 pixel squares. The correct offset is
computed with

Ui,j = ub jw
4 + i

2 c
,

where bxc is the integer part of a real number. The output buffer is 4wh
bytes long, each pixel being represented by a 32-bit value: 8 bit for the blue
component, 8 bit for green, 8 bit for red and 8 bits which must be set to zero.

For the remaining of our discussion, we will make the following assumptions :

1. The image has even width and height.

2. There are no “gaps” between lines of the image in memory. This is often
the case for monochrome image formats (one bit/pixel), where lines always
start on a new byte, even if the width is not a multiple of 8.

4There are in fact different equations for SDTV and HDTV but they differ only in the
matrix coefficients. In this document, we have used coefficients for SDTV.

2

3. A char occupies one byte of memory, a short two and an int four. This is
the case on all compilers for the Pentium processor.

4. Integers are stored in memory in little-endian format. Again this is the
case for the Pentium processor.

A straightforward C/C++ implementation of the algorithm is given by

for (int h = 0 ; h < he igh t ; h++) {
for (int w = 0 ; w < width ; w++) {

int k = h ∗ width + w;
int i = (h / 2) ∗ (width / 2) + (w / 2) ;

int Y = y [k] ;
int U = u [i] ;
int V = v [i] ;

double R = 1 .164 ∗ (Y − 16) + 1 .596 ∗ (V − 128) ;
double G = 1 .164 ∗ (Y − 16) − 0 .391 ∗ (U − 128) − 0 .813 ∗ (V − 128) ;
double B = 1 .164 ∗ (Y − 16) + 2 .018 ∗ (U − 128) ;

i f (R < 0 . 0)
R = 0 .0 ;

i f (G < 0 . 0)
G = 0 .0 ;

i f (B < 0 . 0)
B = 0 .0 ;

i f (R > 255 . 0)
R = 255 . 0 ;

i f (G > 255 . 0)
G = 255 . 0 ;

i f (B > 255 . 0)
B = 255 . 0 ;

unsigned int RGB =
(unsigned int) (B + 0 .5) |
((unsigned int) (G + 0 .5) < < 8) |
((unsigned int) (R + 0 .5) << 16) ;

rgb [k] = RGB;
}

}

and is encapsulated in function prototype

void YUVRGBConversion(
const unsigned char ∗y ,
const unsigned char ∗u ,
const unsigned char ∗v ,
int width ,
int height ,
unsigned int ∗ rgb

) ;

In the above implementation, the RGB values have been saturated between 0
and 255. This operation would be superfluous if we could be sure that the YUV
values were computed from a valid RGB triplet. However, the YUV values may
come from a stream where noise or compression artefact have pushed the values
out of the predefined range. Finally, adding 0.5 before converting the floating

3

point values to integers is a simple trick to round the real value to the nearest
integer rather than simply truncating the fractional part.

3 Basic Optimizations

All the optimizations described in this section will be performed on the C/C++
code.

3.1 Removing Floating-Point Computations

The first observation relates to the use of floating point arithmetic. The preci-
sion provided by floating-point computations is of no concern in this algorithm.
For a sufficiently large integer K, the following approximation satisfies our needs:

1
K

b1.164Ke 0 b1.596Ke
b1.164Ke b−0.391Ke b−0.813Ke
b1.164Ke b2.018Ke 0

 ≈

1.164 0 1.596
1.164 −0.391 −0.813
1.164 2.018 0

 ,

where bxe the nearest integer to the real number x. We compute the new matrix
coefficients as follow:

stat ic const int Pre c i s i on = 32768 ;
stat ic const int Coe f f i c i en tY = (int) (1 .164 ∗ Pre c i s i on + 0 . 5) ;
stat ic const int Coef f i c i entRV = (int) (1 .596 ∗ Pre c i s i on + 0 . 5) ;
stat ic const int Coef f ic ientGU = (int) (0 .391 ∗ Pre c i s i on + 0 . 5) ;
stat ic const int Coef f ic ientGV = (int) (0 .813 ∗ Pre c i s i on + 0 . 5) ;
stat ic const int Coef f i c i entBU = (int) (2 .018 ∗ Pre c i s i on + 0 . 5) ;

Note that we have chosen a power of two for K (Precision) as dividing by a
power of two may be accomplished with a bit shift, which is much faster than
an ordinary division. We also added 0.5 before truncating in order to round the
value to the nearest integer, thus minimizing errors due to the approximation.
Our inner loop now looks like

int R = Coe f f i c i en tY ∗ (Y − 16) + Coef f i c i entRV ∗ (V − 128) ;
int G = Coe f f i c i en tY ∗ (Y − 16) − Coef f ic ientGU ∗ (U − 128)

− Coef f ic ientGV ∗ (V − 128) ;
int B = Coe f f i c i en tY ∗ (Y − 16) + Coef f i c i entBU ∗ (U − 128) ;

R = (R + Pre c i s i on / 2) / Pr e c i s i on ;
G = (R + Pre c i s i on / 2) / Pr e c i s i on ;
B = (R + Pre c i s i on / 2) / Pr e c i s i on ;

i f (R < 0)
R = 0 ;

i f (G < 0)
G = 0 ;

i f (B < 0)
B = 0 ;

i f (R > 255)
R = 255 ;

i f (G > 255)

4

G = 255 ;
i f (B > 255)

B = 255 ;

rgb [k] = B | (G < < 8) | (R << 16) ;

The reason for adding Precision/2 before dividing is, as before, to improve the
accuracy of the approximation induced by the truncation. This step could be
omitted without introducing much error though. Note that we leave to the
compiler the role of optimizing registry usage to compute Y − 16 only once for
example.

3.2 Removing Multiplications

Multiplication is a costly operation on any processor. In the case of our algo-
rithm, multiplications consist of a constant times a single byte value. We can
hence replace them with table lookups. Since there are five different coefficients
in the matrix, we need five tables with an entry for each possible byte value.
Here is how they look like:

stat ic const int Coef f i c i entsGU [256] = {
−Coef f ic ientGU ∗ (0 x00 − 128) ,
−Coef f ic ientGU ∗ (0 x01 − 128) ,
−Coef f ic ientGU ∗ (0 x02 − 128) ,
−Coef f ic ientGU ∗ (0 x03 − 128) ,

. . .

stat ic const int Coe f f i c i en t sY [256] = {
Coe f f i c i en tY ∗ (0 x00 − 16) + (Pr e c i s i on / 2) ,
Coe f f i c i en tY ∗ (0 x01 − 16) + (Pr e c i s i on / 2) ,
Coe f f i c i en tY ∗ (0 x02 − 16) + (Pr e c i s i on / 2) ,
Coe f f i c i en tY ∗ (0 x03 − 16) + (Pr e c i s i on / 2) ,

. . .

You will note that the value Precision/2 have been included in the table for the
Y coefficient. It saves us from adding it after. The matrix multiplication in our
inner loop becomes

int R = Coe f f i c i en t sY [Y] + Coef f i c i entsRV [V] ;
int G = Coe f f i c i en t sY [Y] + Coef f i c i entsGU [U] + Coef f i c i entsGV [V] ;
int B = Coe f f i c i en t sY [Y] + Coe f f i c i ent sBU [U] ;

R /= Pre c i s i on ;
G /= Pre c i s i on ;
B /= Pre c i s i on ;

3.3 Removing Conditional Tests

Many modern processors suffer a penalty when jumping from one point of exe-
cution to another. These jumps may occur when evaluating if statements, de-
pending on the result. Although the more recent Pentium have complex jump

5

prediction algorithms built-in, the best is still to avoid jumps. After investiga-
tion, we note that the RGB values as computed by our algorithm are bounded.
The minimal value is attained with (Y, U, V) = (0, 0, 0) and the maximal value
with (Y, U, V) = (255, 255, 255), in which cases B = −297.984 and R = 683.580.
Thus, even with the approximations in the computations, the values fir in a
1024-wide interval:

−320 ≤ R,G,B < 704. (1)

We hence define a table T with 1024 entries such that

Ti = min{max{i− 320, 0}, 255}.

In fact, we will build a table for each RGB component such that the table
includes the bitshift we use to put in place the component in the final RGB
value. Moreover, using a pointer to T320 as the base pointer of our array allows
us to index the array with negative values:
stat ic unsigned int Coe f f i c i e n t sR [1024] = {

0x000000 ,
0x000000 ,
. . .
0x000000 ,
0x010000 ,
0x020000 ,
. . .
0xFE0000 ,
0xFF0000 ,
0xFF0000 ,
. . .

unsigned int ∗ Coe f f i c i e n t sR = & Coe f f i c i e n t sR [3 2 0] ;

Our loop is now quite tight:
int k = 0 ;
for (int h = 0 ; h < he igh t ; h++) {

for (int w = 0 ; w < width ; w++, k++) {
int i = (h / 2) ∗ (width / 2) + (w / 2) ;

int Y = y [k] ;
int U = u [i] ;
int V = v [i] ;

int R = Coe f f i c i en t sY [Y] + Coef f i c i entsRV [V] ;
int G = Coe f f i c i en t sY [Y] + Coef f i c i entsGU [U] + Coef f i c i entsGV [V] ;
int B = Coe f f i c i en t sY [Y] + Coe f f i c i ent sBU [U] ;

rgb [k] = Coe f f i c i en t sR [R / Pr e c i s i on] |
Coe f f i c i en t sG [G / Pr e c i s i on] |
Coe f f i c i e n t sB [B / Pr e c i s i on] ;

}
}

3.4 Four pixels at once

The final optimization is based on computing four pixels per loop iteration, the
U and V values being shared by precisely four pixels. This implies processing

6

pixels on two scan lines simultaneously. We also replace the array access to the
image data by moving pointers. Here is the code:

const unsigned char ∗ y0 = y ;
const unsigned char ∗ y1 = y + width ;

unsigned int ∗ rgb0 = rgb ;
unsigned int ∗ rgb1 = rgb + width ;

for (int h = 0 ; h < he igh t ; h += 2) {
for (int w = 0 ; w < width ; w += 2) {

int U = ∗u++;
int V = ∗v++;

int RUV = Coef f i c i entsRV [V] ;
int GUV = Coef f i c i entsGU [U] + Coef f i c i entsGV [V] ;
int BUV = Coef f i c i ent sBU [U] ;

int Y = ∗y0++;
int R = Coe f f i c i en t sY [Y] + RUV;
int G = Coe f f i c i en t sY [Y] + GUV;
int B = Coe f f i c i en t sY [Y] + BUV;
∗ rgb0++ = Coe f f i c i e n t sR [R / Pr e c i s i on] |

Coe f f i c i en t sG [G / Pr e c i s i on] |
Coe f f i c i e n t sB [B / Pr e c i s i on] ;

Y = ∗y0++;
R = Coe f f i c i en t sY [Y] + RUV;
G = Coe f f i c i en t sY [Y] + GUV;
B = Coe f f i c i en t sY [Y] + BUV;
∗ rgb0++ = Coe f f i c i e n t sR [R / Pr e c i s i on] |

Coe f f i c i en t sG [G / Pr e c i s i on] |
Coe f f i c i e n t sB [B / Pr e c i s i on] ;

Y = ∗y1++;
R = Coe f f i c i en t sY [Y] + RUV;
G = Coe f f i c i en t sY [Y] + GUV;
B = Coe f f i c i en t sY [Y] + BUV;
∗ rgb1++ = Coe f f i c i e n t sR [R / Pr e c i s i on] |

Coe f f i c i en t sG [G / Pr e c i s i on] |
Coe f f i c i e n t sB [B / Pr e c i s i on] ;

Y = ∗y1++;
R = Coe f f i c i en t sY [Y] + RUV;
G = Coe f f i c i en t sY [Y] + GUV;
B = Coe f f i c i en t sY [Y] + BUV;
∗ rgb1++ = Coe f f i c i e n t sR [R / Pr e c i s i on] |

Coe f f i c i en t sG [G / Pr e c i s i on] |
Coe f f i c i e n t sB [B / Pr e c i s i on] ;

}

rgb0 += width ;
rgb1 += width ;
y0 += width ;
y1 += width ;

}

4 Advanced SIMD Optimizations

SIMD stands for Single Instruction, Multiple Data. Introduced with the Pen-
tium MMX, this technology allows the cpu to perform computations on up to
eight data registers simultaneously. The Pentium MMX and its successors con-

7

tain eight 64-bit MMX registers. Computations with these registers operate
simultaneously on either 2 four-byte values, 4 two-byte values or 8 single bytes.

Our algorithm produces for each pixel four bytes of data: a null byte and
three color bytes. Hence it is a likely candidate to be reworked to use SIMD
instructions. Since there is an instruction to pack 4 two-byte values into four
bytes, the ideal would be to do all of our computations within 16-bit registers.
Doing so requires the Precision constant, which control the precision of the integer
calculations, to be 64. In such a case, as pointed by the inequality 1, the
intermediate values for R, G and B would be between −20480 and 45056, the
latter value being still to large to fit in a signed 16-bit register. However, if
Y UV values are bounded by 235, 240 and 240, the maximum intermediate
value is 30780, which is smaller than 215. The solution is to incorporate into
the coefficient tables these bounds:

#define RGBY(i) { \
(short) (1 .164 ∗ 6 4 ∗ (i − 16) + 0 . 5) , \
(short) (1 .164 ∗ 6 4 ∗ (i − 16) + 0 . 5) , \
(short) (1 .164 ∗ 6 4 ∗ (i − 16) + 0 . 5) , \
0x00 , \

}

stat ic const short CoefficientsRGBY [2 5 6] [4] = {
RGBY(0 x10) , RGBY(0 x10) , RGBY(0 x10) , RGBY(0 x10) ,
RGBY(0 x10) , RGBY(0 x10) , RGBY(0 x10) , RGBY(0 x10) ,
RGBY(0 x10) , RGBY(0 x10) , RGBY(0 x10) , RGBY(0 x10) ,
RGBY(0 x10) , RGBY(0 x10) , RGBY(0 x10) , RGBY(0 x10) ,
RGBY(0 x10) , RGBY(0 x11) , RGBY(0 x12) , RGBY(0 x13) ,
RGBY(0 x14) , RGBY(0 x15) , RGBY(0 x16) , RGBY(0 x17) ,
. . .

RGBY(0xE8) , RGBY(0xE9) , RGBY(0xEA) , RGBY(0xEB) ,
RGBY(0xEB) , RGBY(0xEB) , RGBY(0xEB) , RGBY(0xEB) ,
RGBY(0xEB) , RGBY(0xEB) , RGBY(0xEB) , RGBY(0xEB) ,
RGBY(0xEB) , RGBY(0xEB) , RGBY(0xEB) , RGBY(0xEB) ,
RGBY(0xEB) , RGBY(0xEB) , RGBY(0xEB) , RGBY(0xEB) ,
RGBY(0xEB) , RGBY(0xEB) , RGBY(0xEB) , RGBY(0xEB) ,

} ;

#define RGBU(i) { \
(short) (2 .018 ∗ 6 4 ∗ (i − 128) + 0 . 5) , \
(short)(−0 .391 ∗ 6 4 ∗ (i − 128) + 0 . 5) , \
0x00 , \
0x00 , \

}

stat ic const short CoefficientsRGBU [2 5 6] [4] = {
RGBU(0 x10) , RGBU(0 x10) , RGBU(0 x10) , RGBU(0 x10) ,
. . .

#define RGBV(i) { \
0x00 , \
(short)(−0 .813 ∗ 6 4 ∗ (i − 128) + 0 . 5) , \
(short) (1 .596 ∗ 6 4 ∗ (i − 128) + 0 . 5) , \
0x00 , \

}

stat ic const short CoefficientsRGBV [2 5 6] [4] = {
RGBV(0 x10) , RGBV(0 x10) , RGBV(0 x10) , RGBV(0 x10) ,
. . .

The tables have also been laid out such that a single table entry is composed of

8

4 two-byte values. This layout allows to load in one operation a 64-bit MMX
register with the coefficients for all three color components.

Before going further, we should consider the approximation errors introduced
by setting Precision to 64. Each table entry has been rounded to the nearest
integer and hence may be up to 0.5 off from the exact value. The sum of three
of these entries has thus an error less than or equal to 1.5. The computed value
is then divided by 64 and rounded again. The error, 1.5/64 (1/48), at worst
causes rounding to the incorrect integer value after the division. The maximum
error on each RGB component is hence ±1, which is quite reasonable.

Using the MMX registers in an optimal way requires the use of assembly lan-
guage. With Microsoft’s C/C++ Compiler, directives declspec(naked) and cdecl

can be used to write an assembly language function without any interference
from the compiler. The body of our function starts with

asm {
pushad
f i n i t

The pushad instruction pushes all registers on the stack. They will be restored
before leaving the function. This is always safer when mixing assembly language
within C/C++ code as compilers make some assumptions on which registers
are preserved by a function call. The finit instruction resets the floating-point
unit. MMX registers and FPU registers are in fact the same and can not be
used simultaneously. Switching from FPU registers to MMX mode requires the
floating point register unit to be empty, hence the finit instruction.

xor eax , eax
mov ebx , [esp + 32 + 20]
mov ecx , [esp + 32 + 16]
mov edx , [esp + 32 + 4]
mov edi , [esp + 32 + 8]
mov esi , [esp + 32 + 12]
mov ebp , [esp + 32 + 24]

We then load all variables in registers: image width in ecx, height in ebx, pointers
to YUV buffers in edx, edi and esi, pointer to output RGB buffer in ebp. Register
eax is zeroed for later use. The offset of 32 bytes is caused by the pushad

instruction, which stores 32 bytes of data on the stack.

hloop :
push ebx
mov ebx , ecx

This is the beginning of the loop on the image lines. At this point, ebx contains
the number of lines left to process. We pushes it on the stack and set ebx to the
image width, in order to proceed with the next loop.

wloop :
push ebx
xor ebx , ebx

9

Now the loop on each line pixels. ebx, the number of pixels left to process on
the line, is pushed on the stack and zeroed for later use.

mov al , [edi]
mov bl , [es i]
movq mm0, [CoefficientsRGBU + 8 ∗ eax]
paddw mm0, [CoefficientsRGBV + 8 ∗ ebx]

In the above four lines, we start by loading U and V in al and bl. Since eax and
ebx were previously zeroed, the upper 24 bits are zero hence the registers can
be immediately used to compute the correct offset in the coefficient tables. The
third instruction loads 64 bits of data (four 2-byte values) into MMX register
mm0, which will contain

mm0 BU GU 0000 0000 ,

where BU is the integer part of 2.018 ∗ 64 ∗ (i − 128) + 0.5 and so on. Finally,
the fourth instruction adds in the values for V . All four values are added
simultaneously:

mm0 BU GU +GV RV 0000 .

All that in four instructions!
mov al , [edx]
mov bl , [edx + 1]
movq mm1, [CoefficientsRGBY + 8 ∗ eax]
movq mm2, [CoefficientsRGBY + 8 ∗ ebx]

Similarly, the above instructions load in mm1 and mm2 the results of the matrix
coefficient multiplication with Y − 16 for two consecutive pixels:

mm1 BY1 GY1 RY1 0000 ,

mm2 BY2 GY2 RY2 0000 .

mov al , [edx + ecx]
mov bl , [edx + ecx + 1]
movq mm3, [CoefficientsRGBY + 8 ∗ eax]
movq mm4, [CoefficientsRGBY + 8 ∗ ebx]

We do the same for the two pixels on the next scan line. As with our C/C++
algorithm, we will process four pixels in a single loop iteration.

paddw mm1, mm0
paddw mm2, mm0
paddw mm3, mm0
paddw mm4, mm0

psraw mm1, 6
psraw mm2, 6
psraw mm3, 6
psraw mm4, 6

10

The above eight instructions finish the computation by adding Y coefficients to
the previously computed values and arithmetically shifting right by 6 bits, thus
dividing by 64. The registers now contain

mmi Bi Gi Ri 0000 .

Note that the values are in the −20480/64 = −320 to 30780/64 = 481 range, as
explained earlier.

packuswb mm1, mm2
packuswb mm3, mm4

Now the powerful instruction packuswb. This instruction packs eight 2-byte
values from two MMX registers in a single register. Values lower than zero are
set to zero while ones superior to 255 are saturated, which is exactly what we
need! After this operation, we have

mm1 B2 G2 R2 00 B1 G1 R1 00 ,

mm3 B3 G3 R3 00 B4 G4 R4 00 .

The four pixels are ready to be stored in memory.

movq [ebp] , mm1
movq [ebp + 4 ∗ ecx] , mm3

We will see in the next section that these two memory write instructions intro-
duce a considerable latency in the flow of execution.

add ebp , 8
add edx , 2
add edi , 1
add esi , 1

Pointers are incremented according to the size of the data required to represent
two consecutive pixels on a single row.

pop ebx
sub ebx , 2
jnz wloop

We loop on pairs of pixels. Recall that the value pop from the stack is the
number of pixels left to process.

lea ebp , [ebp + 4 ∗ ecx]
add edx , ecx

At the end of each line, we must adjust pointers to skip a line as our inner loop
processes pixels from two lines simultaneously. In this code, the lea instruction
is used to add four times the value of ecx to ebp in short simple way.

11

pop ebx
sub ebx , 2
jnz hloop

We loop on every line pairs of the image.

emms
popad
ret

}

The function ends with two cleanup instruction and a return. The first in-
struction, emms, frees the MMX processing unit, leaving it ready to eventually
perform floating-point calculations. The second instruction, popad restores the
values of all registers modified by the function.

The complete code of the function is listed below. It is composed of only 52
instructions and runs much faster than our last C/C++ function. The results
are consigned in section 6.

asm {
pushad
f i n i t

xor eax , eax
mov ebx , [esp + 32 + 20]
mov ecx , [esp + 32 + 16]
mov edx , [esp + 32 + 4]
mov edi , [esp + 32 + 8]
mov esi , [esp + 32 + 12]
mov ebp , [esp + 32 + 24]

hloop :
push ebx
mov ebx , ecx

wloop :
push ebx
xor ebx , ebx

mov al , [edi]
mov bl , [es i]
movq mm0, [CoefficientsRGBU + 8 ∗ eax]
paddw mm0, [CoefficientsRGBV + 8 ∗ ebx]

mov al , [edx]
mov bl , [edx + 1]
movq mm1, [CoefficientsRGBY + 8 ∗ eax]
movq mm2, [CoefficientsRGBY + 8 ∗ ebx]

mov al , [edx + ecx]
mov bl , [edx + ecx + 1]
movq mm3, [CoefficientsRGBY + 8 ∗ eax]
movq mm4, [CoefficientsRGBY + 8 ∗ ebx]

paddw mm1, mm0
paddw mm2, mm0
paddw mm3, mm0
paddw mm4, mm0

psraw mm1, 6
psraw mm2, 6

12

psraw mm3, 6
psraw mm4, 6

packuswb mm1, mm2
packuswb mm3, mm4

movq [ebp] , mm1
movq [ebp + 4 ∗ ecx] , mm3

add ebp , 8
add edx , 2
add edi , 1
add esi , 1

pop ebx
sub ebx , 2
jnz wloop

lea ebp , [ebp + 4 ∗ ecx]
add edx , ecx

pop ebx
sub ebx , 2
jnz hloop

emms
popad
ret

}

5 Further Optimizations?

A few years ago, it was still possible to count clock cycles before actually exe-
cuting the code. Modern Pentium processors include technology features which
greatly complexify such a task. Instructions are decoded and translated into
micro-instructions, which may be executed out-of-order, cache misses may in-
troduce considerable latency, instructions are fetched simultaneously into var-
ious processing units from different ports and so on. Moreover, as advanced
features are added to processors, optimizations may be more or less effective, as
the results in the next section show.

Careful experimentation with the above function leads us to an interesting fact:
most of the time is spent in the two memory write instructions! In such a case,
Intel’s optimization guide [2] suggests to use non-temporal stores. These special
memory write instructions hint the processor to bypass cache allocation for the
memory to be written. The benefit is double: cache “pollution” is reduced and
write latency is improved. However, these instructions must be used with care
as severe penalties may occur if the written memory is accessed shortly after.
We thus replace the two write instructions with

movntq [ebp] , mm1
movntq [ebp + 4 ∗ ecx] , mm3

The effect of this modification varies drastically from processor models to others.

13

Intel’s optimization guide also suggest to write sequentially to memory when-
ever possible. As our assembly version processes two scan lines simultaneously,
memory writes alternate between two regions. The solution to prevent these
non-sequential memory access would be to process only two pixels per itera-
tion. The price to pay is that more instructions will be executed to perform
the full image conversion. We leave the realization of this version as an exercice
to the interested reader. Results, which are quite instructive, are given int the
following section.

6 Results

In order to test the speed improvements given by the optimizations described in
this document, the code has been compiled with two different compilers on three
different processors. The code was first ran on a 886× 806 bitmap depicting “il
Festino degli dei”, a painting by the Early Renaissance Italian artist Giovanni
Bellini. It was also ran on a randomly generated 4000× 3000 image.

The three computer configurations tested were:

1. A 750MHz Pentium III on a laptop computer running Windows 2000 under
256Mb of RAM.

2. A 2GHz Athlon XP running Windows 2000 under 512Mb of RAM.

3. A 2.4GHz Pentium IV running Windows XP under 512Mb of RAM.

The two compilers where Microsoft C/C++ Compiler 13.0, included in the .NET
Framework, and mingw, a Win32 port of GCC 3.2. No special optimization
compilation directives were used. The results, expressed in milliseconds, are
summarized in tables 1 and 2. No particular care was taken to make very
precise timings, hence from one run to another small variations were noticed.
The values printed are the minimum values obtained in a few runs.

These results clearly show that the optimizations are more or less effecient
depending on the target processor and the compiler used. For example, let
us consider the replacement of multiplications by table lookups. With GCC,
the speed improvement is significant, from 1.36 to 1.61 times faster with the
random image while with Microsoft’s compiler, the improvement factor is at
most 1.24.

Another interesting result is the effect of non-temporal stores. On Intel’s pro-
cessors, the effect is clearly benefic. However, on AMD’s Athlon, there is an
outstanding penalty when we use this special feature. However, when we put
one movntq instruction and one movq instruction, there is no penalty but rather a
33% speed improvement! As this strange behavior seems specific to the Athlon,
the results were not included in the tables.

14

P3 Athlon P4
gcc vc++ gcc vc++ gcc vc++

Floating-Point Code 182.3 142.4 47.1 55.2 39.5 106.6
Integer Multiplication 70.5 41.9 22.6 18.7 30.0 21.1
No Multiplications 40.3 38.4 14.7 15.1 12.6 13.6
No Conditionals 30.9 32.9 12.6 16.0 8.6 10.9
Four Pixels 29.4 27.9 10.8 13.7 7.2 8.1
Assembly Code 17.7 5.0 4.4
Non-Temporal Stores 16.2 11.9 3.5
Two Pixels 19.7 2.8 2.8

Table 1: Timings for 886× 806 Giovanni Bellini painting

P3 Athlon P4
gcc vc++ gcc vc++ gcc vc++

Floating-Point Code 3356.4 2971.9 996.2 1124.3 1083.9 2174.2
Integer Multiplication 1496.3 991.6 488.3 409.4 782.2 664.2
No Multiplications 957.0 943.3 356.9 366.8 483.8 531.9
No Conditionals 654.5 547.4 270.7 277.8 335.4 294.6
Four Pixels 646.1 483.4 233.2 234.2 236.7 189.2
Assembly Code 286.6 84.9 72.8
Non-Temporal Stores 258.2 196.7 57.3
Two Pixels 318.8 48.5 56.1

Table 2: Timings for 4000× 3000 random image

In conclusion, SIMD instructions did brought a significant speed improvement,
especially on the more recent processors. However, extreme care must be taken
with memory writes as they may considerably slow down an algorithm, as the
better timings for processing two pixels per iteration rather than of four demon-
strate.

References

[1] Instruction set reference. In IA-32 Intel Architecture Software Developer’s
Manual, volume 2. Intel Corporation, 1997-2003.

[2] IA-32 Intel Architecture Optimization. Intel Corporation, 1999-2003.

[3] Intel Corporation. Using MMX instructions to convert RGB to YUV color
conversion. 1996.

[4] Keith Jack. Video demystified: a handbook for the digital engineer, chapter 3,
pages 15–34. LLH Technology Publishing, 2001.

15

